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Synthesis of Quarter-Wave Coupled Junction
Circulators with Degrees 1 and 2
Complex Gyrator Circuits

JOSEPH HELSZAJN, MEMBER, IEEE

Abstract — The complex gyrator immittance of circulators for which the
in-phase eigennetwork is commensurate with those of the degenerate
counter-rotating ones, and which may be idealized by a frequency-indepen-
dent open- or short-circuited boundary condition, may be realized as a
1-port STUB-resistor network of degree 1. If the frequency variation of
this eigennetwork cannot be neglected compared to those of the other two,
the gyrator circuit is of degree 2. There are altogether eight possible
complex gyrator circuits, each of which explicitly exhibits the eigennet-
works of the device. A knowledge of that, applicable in any given situation,
is mandatory for design.

I. INTRODUCTION

HE CONSTRUCTION OF the 3-port circulator in-
Tvolves the adjustment of one in-phase and two split
counter-rotating eigennetworks [1]. The in-phase eigennet-
work may be commensurate with those of the demag-
netized ones [2] or it may coincide with the frequency at
which the split eigennetworks exhibit complex conjugate
immittances [3], or it may, in general, be noncom-
mensurate. If it is idealized by a frequency-independent
open- or short-circuited boundary condition, then the 1-port
complex gyrator immittance of the junction is a STUB
R-circuit of degree 1, otherwise it is a STUB R-circuit of
degree 2. Although the degenerate counter-rotating eigen-
networks usually exhibit an open-circuited wall at the
terminals of the junction, they may, strictly speaking, also
exhibit a short-circuited wall there, so that it is in fact
possible to realize four 1-port gyrator circuits for each class
of solution. The main purpose of this paper is to sum-
marize the four possible complex gyrator networks of each
degree and to form the network problem for the degree 2
topologies. A knowledge of the appropriate eigennetworks
and complex gyrator circuit in any given situation is, of
course, an essential prerequisite for design. The 1-port
complex gyrator circuits of degree 2, interestingly enough,
explicitly exhibit both the in-phase and split counter-rotat-
ing eigennetworks of the magnetized junction and thus
permit the synthesis problem to be directly posed in terms
of the microwave problem. This network has been specifi-
cally drawn in [4]-[11]. A host of equivalent circuits have
been proposed over the years for the classic 3-port junction
circulator, and some of these are described in [12]-[21],
[28].
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II. CoMPLEX GYRATOR CIRCUITS OF DEGREES 1
AND 2 OF JUNCTION CIRCULATORS WITH OPEN-
AND SHORT-CIRCUITED IN-PHASE
EIGENNETWORKS

The eigenvalue diagrams employed to classify the 1-port
complex gyrator circuits of weakly magnetized junction
circulators usually assume that the demagnetized counter-
rotating (S *) and in-phase (S°) eigenvalues are S*=
and S°%= 11 1], [5], [7], [21]. However, these two solutions
do not form a full set since it is also possible to have
S*=—1and S%= +1. Fig. 1 depicts the complete family
of solutions. The in-phase and counter-rotating eigenvalues
are the reflection variables of 1-port reactive networks
known as the eigennetworks of the junction. These may be
realized in terms of the poles of the eigenvalues in either a
first or second Foster form, in the manner illustrated in
Fig. 2(a) and (b) [3]. Counter-rotating poles, in this expan-
sion, that have the symmetry of the junction are associated
with the in-phase eigennetwork. Whether a pole of an
eigenvalue exhibits an electric or magnetic wall at the
symmetry plane is readily established by application of the
appropriate in-phase or counter-rotating eigenvectors at
the terminals of the junction [1], {27]. Although the lowest
order in-phase pole is usually associated with a magnetic-
wall boundary condition at the symmetry plane of the
junction, it may also exhibit an electric wall there, as, for
instance, in an E-plane junction, or if a thin metal wall is
introduced through the plane of symmetry of an H-plane
one, or in the vicinity of the counter-rotating poles having
the symmetry of the junction. Likewise, although the lowest
order counter-rotating poles of the junction are usually
associated with electric-wall boundary conditions at the
symmetry plane of the junction, they may still exhibit
magnetic-wall boundary conditions at its terminals by real-
izing the eigennetworks by half-wave-long transmission
lines instead of quarter-wave ones. Fig. 3 illustrates the
distinction between the in-phase eigennetworks for E- and
H-plane junctions.

Substitution of an electric wall for a magnetic one, for
either of the eigenvalues, leads to a reversal in the direction
of circulation of the junction, as is readily verified if the
splitting between the eigenvalues is correctly reset [26].
This is also the case if S* are interchanged. The open-cir-
cuit parameters of the junction do not exist if the in-phase
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Fig. 1. (a) First and second circulation adjustments for junction circula-
tor with §°=—1 and §* =1. (b) First and second circulation adjust-
ments for junction circulator with §° = —1 and §* = —1. (¢) First and
second circulation adjustments for junction circulator with §®=1 and
*=—1. (d) First and second circulation adjustments for junction

circulator with $°=1and S*=1.

eigennetwork exhibits a magnetic-wall boundary condition,
and conversely the short-circuit parameters do not exist if
it exhibits an electric-wall boundary condition. If the in-
phase and degenerate eigennetworks exhibit dual walls,
then the demagnetized junctions have neither open- nor
short-circuited parameters. If the in-phase eigennetwork is
idealized by a frequency-independent electric or magnetic
wall at the terminals of the junction then the corresponding
eigenvalue diagram is of degree 1, otherwise it is of degree
2. A number of practical examples of the latter class have
been mentioned in [4], [7], [10], [11}.

The eigenvalue diagrams in Fig. 1(a)—(d) may be labelled
according to whether the eigennetworks exhibit electric of
magnetic walls at the terminals of the junction and accord-
ing to whether the in-phase eigennetwork is idealized by a
frequency-independent electric or magnetic wall or not as
e,2m, e,2e, m,2e, and m,2m of degree 1 or 2. If the
in-phase eigennetwork is idealized by either a frequency-in-
dependent open- or short-circuited stub at the terminals of ‘
the junction, then the 1-port complex gyrator circuit is a
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Fig. 2. First and second foster forms of in-phase and counter-rotating
eigennetworks of junction circulator.

STUB-R load of degree 1, otherwise it is a STUB-R load
of degree 2. The 1-port gyrator circuits of degrees 1 and 2
discussed here are formed in terms of the in-phase (Z°,Y?)
and counter-rotating (Z%,Y*) immittance eigenvalues;
both the in-phase and counter-rotating eigennetworks are
explicitly exhibited by the gyrator circuits of degree 2.
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Fig. 3. In-phase excitation of E- and H-plane junctions.

The complex gyrator circuits of degree 1, obtained by
idealizing the in-phase eigennetwork by a frequency-inde-
pendent electric wall and those of the degenerate counter-
rotating ones by either magnetic or electric walls will now
be examined as a preamble to summarizing the dual prob-
lem for which the in-phase eigennetwork exhibits a mag-
netic wall at the terminals of the network. Fig. 4 gives the
complex gyrator circuits for the four degree 1 situations,
and Fig. 5 illustrates the corresponding lumped-element
circuits. Since the short-circuit parameters do not in the
former instance exist, the derivation starts by forming the
classic gyrator 1-port impedance in terms of the open-cir-
cuit parameters of the junction with V; =1,=0

2
Zl2

Z, — .
Zy,

m

=Zy (1)
The short-circuit parameters Z,;, Z,,, and Z,; are given in

the usual way in terms of the admittance eigenvalues Z°
and Z* by

AR AN A

le=—*—~*“§“"—“ (2)
Z%+ ZTexp(j120)}+ Z~ exp(— j120

Z, = p(] g p( J ) (3)
Z°+ Z% exp(— j120)+ Z~ exp (120

7= p( 13) (/120) (4

Exact complex gyrator circuits of degree 1 may now be
formed at the frequencies at which the counter-rotating
eigennetworks exhibit either electric or magnetic walls.
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Fig. 4. Complex gyrator circuits of degree 1.

Idealizing the in-phase eigennetwork by an electric wall
gives

Z°=0. (5)

The result is

1 (Ytyy) (YY)
}/ln_”Z—._ 2 ]ﬁ 2 M

m

(6)

This result has historically been given with an approxima-
tion sign but is exact as can be readily verified by tracing
(1) and (6). The case where the degenerate eigenvalues
exhibit magnetic walls may now be distinguished from that
for which they have electric walls. In the first situation, the
counter-rotating ecigennetworks may be realized using
quarter-wave-long short-circuited stubs, and the complex
gyrator circuit takes the form in Fig. 4(a). In the second
case, the counter-rotating networks may be realized by
half-wave-long short-circuited stubs, and the corresponding
complex gyrator circuit has the topology indicated in Fig.
4(b). The counter-rotating eigenvalues are also, in this
latter instance, interchanged on the eigenvalue diagram so
that the junction now circulates in the opposite direction.
Some additional distinguishable properties of these two
solutions are that for the eigenvalue diagram in Fig. 1(a)
the real part of the gyrator immittance tends to a magnetic
wall as the junction is demagnetized, while that in Fig. 1(b)
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tends to an electric wall under the same condition. Whether
one or the other situation applies is determined by whether
the degenerate eigennetworks have magnetic or electric
walls. Furthermore, the required angular splitting on the
eigenvalue diagram is in the former case, half that of the
latter one. Surprisingly enough, the susceptance slope
parameter of the second solution is now a function of the
splitting. All of these aspects may be readily verified by
scrutinizing Figs. 1(a) and (b) and 4(a) and (b), or they
may be more directly demonstrated by assuming that ¥ +
in Fig. 2 may phemenologically be written as

Yi=— jalecot(Bl + Af). (7)

6, is the electrical length of the degenerate counter-rotating
eigennetworks, + Af, represents the perturbation in the
demagnetized eigennetworks when the junction is mag-
netized, Y, is the characteristic admittance of the eigennet-
works which, for simplicity, are assumed to coincide with
those of the demagnetized junction, and a; is the turns
ratio of an ideal transformer that represents the coupling
between the three transmission lines and the resonator.

Forming (6) in the vicinities of §, = #/2 and 7 readily
yields

cot 8, (1+tan® AG, )

1—cot?4, tan® Ad,

tand, (1 + tan’ A6, )
tan®#, — tan’ Ad,

Yin = ‘/3(112Y1 tan Aol - jalzyl

(8)

Y= —y3aiY,cot A9, — jalY,

()

The real part of the first solution is asymptotic to a
magnetic wall in the neighborhood of #/2 as the junction
is demagnetized and the second one to an electric wall in
the vicinity of @, = under the same conditions. The
imaginary part of the second solution also differs from the
first one in that it exhibits a passband at

tan#, =0

(10)

and stopbands at
(11)

and that in the vicinity of 8, = & its susceptance is depen-
dent upon A#,. These features may also be appreciated by
inspection of the lumped-element gyrator circuits in Fig. 5.
The susceptance slope parameters of these two arrange-
ments, neglecting the frequency variation of the denomina-
tor polynomials, are given by (8) and (9) in the vicinities of
0,=m/2 and 7 as

tan @, = +-tan Af,

B’ = %alel

(12)

B'= —"ziafyl /tan? A, (13)
respectively. The loaded Q-factors for these two solutions
have both the same form and are indeed identical if B’ in
(13) is realized with the aid of an open-circuited quarter-
wave-long stub instead of a short-circuited half-wave-long
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Fig. 5. Lumped-element equivalent circuits of complex gyrator circuits
of degree 1.
one
B’ T
Q,=——=—=cotAd, (14)
Gin 4\/’3_
ks
Q;=—=rcotAd,. (15)
2/3

A6, is determined by the real parts of (8) and (9). The
nature of these two solutions has been verified by forming
their exact frequencies responses in the vicinities of 8, =
7/2 and 7 using (1). The e,2m degree 1 solution described
by (8), (12), and (14) is of course a standard result and
need not be dwelt on further. Fig. 6 gives the frequency
response of one solution for completeness. The e,2e degree
1 result, given by (9), (13), and (15), however, differs from
the classic one in that both its susceptance slope parameter
and conductance are dependent upon the magnetic vari-
ables of the resonator. Figs. 7 and § display the frequency
responses of this solution for two different arbitrary values
of the magnetic parameter. The passbands and stopbands
exhibited by (10) and (11) are noted. The fact that the
gyrator conductance is negative in this result merely means
that the device rotates in the opposite direction from the
solution in Fig. 6.

The complex gyrator circuit in Fig. 4(a) is the classic
result met in the theory of planar and turnstile H-plane
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Fig. 6. Conductance and susceptance of ¢,2m degree 1 complex gyrator
circuit for A8, = 0.10 rad (a ¥, =1).

junctions using quarter-wave-long open resonators [12],
[27]. The one in Fig. 4(b) may also be realized in an
E-plane junction. The demagnetized junction now exhibits
a bandstop instead of a bandpass characteristic [15], [20].

The angles 6 * on the eigenvalue diagrams are functions
of 4,, Ad,, and B’ and may be formed by constructing the
reflection coefficients S * =1lexp(— j20 *).

St=—"—

(16)

where Y, is the characteristic admittance at the ports.

The derivation of the 1-port complex gyrator circuits of
degree 1 for the cases where the in-phase eigennetwork is
idealized by a frequency independent magnetic wall and
those of the counter-rotating ones by either magnetic or
electric walls proceeds in a similar fashion except that
short-circuit parameters are employed to form the complex
gyrator immittances, and that Y ° instead of Z° is assumed
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Fig. 7. Conductance and susceptance of e,2e degree 1 complex gyrator
circuit for Af; = 01.0 rad (a7 ¥, =1).

to be zero in the approximation problem

o (Z*+27)

Zm 2

+ i3 (z ; Z7). (17)

The appropriate equivalent circuits are illustrated in Fig.
4(c) and (d). The gyrator resistance is asymptotic to an
electric wall in the first instance and to a magnetic one in
the second case. The solution in Fig. 4(c) is well behaved in
the vicinity of its midband, but that in Fig. 4(d) exhibits
stopbands on either side of its passband and a stopband in
its demagnetized state.

Short-circuited in-phase eigennetworks may in practice
be realized by introducing a short-circuit boundary condi-
tion in the form of a thin metal post through the symmetry
axis of an H-plane junction or may be directly exhibited
by an E-plane junction or may be formed in the vicinity of
a pole having the symmetry of the device. An example of
an m,2e eigenvalue diagram or complex gyrator circuit of
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circuit for Ag, = 0.30 rad (a?¥; =1).

degree 1 may be understood from the situation described
in [15]. An example of an m,2m eigenvalue diagram of
degree 1 does not come to mind, but a half-wave-long
turnstile resonator in an E-plane junction is one possibil-
1ty.

The derivation of the complex gyrator circuits of degree
2 for the two eigenvalue diagrams in Fig. 1(a) and (b), as
well as for the two in Fig. 1(c) and (d), has been outlined in
[11] except that the situations for which S*=—1 are
specifically outlined in Fig. 9. It will therefore not be
repeated here. Fig. 10 gives the lumped-element equivalent
solutions for this class of device. In realizing these circuits,
it has been assumed that the real part of the complex
gyrator immittance may be formed by idealizing the in-
phase eigennetwork by either an electric or magnetic wall
[3], [11]. It is readily appreciated that the split shunt
parallel and series resonators in Fig. 10 both reduce to
single shunt resonators in the vicinities of the passband
frequencies, and that, likewise, the series combinations of
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the series and parallel resonators reduce to series reso-
nators at the same frequencies. Each of the gyrator circuits
of degree 2 has the same transmission zeros and thus each
can be arranged to exhibit the same transmission character-
istic. The insertion-loss function for this class of network is

~akin to that realizable with a complex gyrator circuit of

degree 1 coupled by a single U.E. Examples of this situa-
tion have been mentioned in [4], [7], [10], [11}. The synthe-
sis of U.E.-coupled complex gyrator circuits of degree 2 is
of course of interest [6], [10] and will be tackled in some
detail in the next section. The synthesis of U.E.-coupled
gyrator circuits of degree 1 is well rehearsed in the litera-
ture [22]-[25}.

I11.

Since the circuits in Fig. 9(a) and (b) have similar
topologies as have those in Fig. 9(c) and (d), the matching
problems reduce to the solutions of the two situations in
Fig. 11(a) and (b). Furthermore, since all four circuits have
the same transmission zeros, they may all be synthesized
from the same insertion-loss function. Although the eigen-
networks of the junction may, consist of half- or three-
quarter-wave-long stubs, the circuits in Fig. 11 employ
quarter-wave-long stubs to permit exact synthesis of the
network problem. The equivalence between the circulator

THE NETWORK PROBLEM
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of degree 2.

and network problems is then achieved by equating the
susceptance or reactance slope parameters of the two.

The Chebyshev approximation problem may be readily
formed from a knowledge of the n-transmission zeros of
the transformed variable Z and follows closely the proce-
dure employed in [25]. The appropriate conformal transfor-
mation between the Z and Richards S variables is in this
instance given by

Z =1+ S%/Q? (18)
where S is
(19)
and €, is determined by the lower band-edge electrical
length 4, indicated in Fig. 12

S=jtand

(20)

The networks in Fig. 11 have a double-ordered pole at
S = 0, due to the two stubs

2, = jtané,.

Z, ,=1 (21)
and a half-ordered pole at S =1
Zy=\1+1/Q} (22)

the latter being due to the unit element.
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Fig. 11. (a) Quarter-wave coupled shunt STUB-R load of degree 2. (b)

Quarter-wave coupled series STUB-R load of degree 2.

The auxiliary function is

" Z+Z

12)=11/ 355 (23)
where for the problem at hand
[T(z+2)=0+2) 1+é+z. (24)
=1 1

The Chebyshev equiripple insertion-loss function is given
in terms of the auxiliary function by

L=1+K2+ez[f—————~(z)+2f(~z)r (25)

or

(1+ 2% 1+é +22?

1

L=1+K?+¢* . (26)

1 1,2
(1-2%) 1+——2—22)
Q1

Writing Z in terms of S readily gives the required result

(/1+07 +20,)s2+203(1+ 07 + Ql)r
sH1-5? '

L=1+K?*+¢2

27
This may be synthesized separately without difficulty to
give the circuits indicated in Fig. 11. Some results for the
topology in Fig. 11(a) are given in Table I. These tables are
also directly applicable to the circuit in Fig. 11(b) by
noting the duality between the two circuits. This is done by
replacing Y, with Z,, Y, with Z,, ¥, with Z,, and G
with R.
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TABLEI

DEGREE N= 4 S(MAX)= 1.18  S(8LN= 1

W G Y3 e Y1 ve
C.2000 0,044 CL.R0T  J.8140 £.2108  8.0080
G 2500 C.0L78 BLR4FT 2.8708 L2603 PRER S
$.3008 0,075 0.287%  2.A71E 0 6.884 9.00227
0.350¢ 0.1258 GL.3222 0 201200 /3546 06,0387
0. 4000 c.1889 0.3528 1.73%7 SL.4P87 60,0520
£.4500 Ge1540 0.374F  1L.82EL 0 0.540% £.0743
0.5080 0.2302 CL3R66  1.38R4 0 £.4779 0.2000
0,550¢ [ RS-k 1 G415 L2080 CLSAVG 0 61327

NI T 11 $,3048 SLARLT 148872 8.5518 98,1703

B bGa7 ¢ 3835 CLAZBL LLPBIY 0 0.5945 L0232

L7080 O ETTE 0LA275  0.8735 0.56144 0.2648
0.7500 04127 ¢.4278 ©.8141 Ges4TS , Co32R4
0., 8000 PREE T 0,4229  0.74385 0.4883 0.3877

.850C 0.4793 CoA15R L0804 CLOTRI 0. 4520
T RO08 D.5108 0.4052 CL.&2ZT 8.7145 0.5488
500 045401 CL.3IFIC CLETIE L7349 £.635%3
1,0000 29,5681 0.37FL L8R40 SLPEFY 0 0.7440
DOGREE M= 3 S(HAXS= 1.45 SONN= 102

W [ v3 q Y1 ya2
C.200¢ .0468 GL222C  B(PRVA L.218% T 0.00YT
.2808 0.0718 G.2855, 0 D.P08 G200 0.5142
0. 3000 o102 CL3L2C  R.A48E £L3197 0 0.0243
C.3500 ©.1323 0.2493  2.0745  0.3473 58,0302
G 4000 [ A $.3810 1,738 4126 40583
¢.4800 $.2033 8.4074 1e8725 46,4554 0.0792
0.5000 €, 2409 G275 - 1.3%37 04957 01073
$.5500 S.2798 £,4405 31,2455 0,533% 5,141
£.46000 G312 C.4525 1.1208 0 0,8688 0£.1808
Cebbs7 D.2472 0.4585 0.TE08 $.6420  0.0244¢0
0. 7000 [T $L4587  CLPREC 0,630 GL.RBO0X
0. 7E0C 9,4272 C.4558 ¢.9388  S.68051 0,381
G 8000 0,4514 0.4896 00YENT C.EBEL 06,4099
C.B50¢ 05,4742 £.4405  0,7001  0,7100  0.,487¢
07000 ¢.5282 CL.AZB8  C.6312 0 (O3S 6.57EC
.950¢ 08,5544 L4150 0.SBYE 0 S.7ERL  0.6T31
1.0000 L5823 CL3TTS GLE3ESY 0L 7707 07831

Since the more useful values of loaded Q-factors in
junction circulators are obtained by having the gyrator
conductance traverse the origin of the Smith Chart, inspec-
tion of the tabulated data indicates that not all degree 2
complex gyrator circuits are equally well suited for match-
ing with a single U.E. The realization of the appropriate
immittance levels of the gyrator circuits of practical circu-
lators must of course be determined either experimentally
or theoretically [27].

n =3 equiripple insertion-loss function.

IV. CoNCLUSIONS

Three-port junction circulators employing weakly mag-
netized resonators may exhibit one of four eigenvalue
diagrams of degree 1 or 2. There are, therefore, cight
possible complex gyrator circuits and these have been
directly realized in terms of the eigennetworks of the
junction. A knowledge of that, applicable in any given
situation, is essential for design. The topologies of the
gyrator circuits derived in this paper are partlcularly suit-
able for use in the synthesis problem.
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