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Synthesis of Quarter-Wave Coupled Junction
Circulators with Degrees 1 and 2

Complex Gyrator Circuits

JOSEPH HELSZAJN, MEMBER, IEEE

Abstract —The complex gyrator immittance of circulators for which the

in-phase eigennetwork is commensurate with those of the degenerate

counter-rotating ones, and which may be ideafized by a frequency-indepen-

dent open- or short-circuited boundary condition, may be reafiied as a

l-port STUB-resistor network of degree 1. If the frequency variation of

this eigennetwork cannot be neglected compared to those of the other two,

the gyrator circuit is of degree 2. There are altogether eight possible

complex gyrator circuits, each of which explicitly exhibits the eigennet-

works of the device. A knowledge of that, applicable in any given sitnation,

is mandatory for design.

I. INTRODUCTION

T HE CONSTRUCTION OF the 3-port circulator in-

volves the adjustment of one in-phase and two split

counter-rotating eigennetworks [1]. The in-phase eigennet-

work may be commensurate with those of the demag-

netized ones [2] or it may coincide with the frequency at

which the split eigennetworks exhibit complex conjugate

immittances [3], or it may, in general, be noncom-

mensurate. If it is idealized by a frequency-independent

open- or short-circuited boundary condition, then the l-port

complex gyrator immittance of the junction is a STUB

R-circuit of degree 1, otherwise it is a STUB R-circuit of

degree 2. Although the degenerate counter-rotating eigen-

networks usually exhibit an open-circuited wall at the

terminals of the junction, they may, strictly speaking, also

exhibit a short-circuited wall there, so that it is in fact

possible to realize four l-port gyrator circuits for each class

of solution. The main purpose of this paper is to sum-

marize the four possible complex gyrator networks of each

degree and to form the network problem for the degree 2

topologies. A knowledge of the appropriate eigennetworks

and complex gyrator circuit in any given situation is, of

course, an essential prerequisite for design. The l-port

complex gyrator circuits of degree 2, interestingly enough,

explicitly exhibit both the in-phase and split counter-rotat-

ing eigennetworks of the magnetized junction and thus

permit the synthesis problem to be directly posed in terms

of the microwave problem. This network has been specifi-

cally drawn in [4]–[11]. A host of equivalent circuits have

been proposed over the years for the classic 3-port junction

circulator, and some of these are described in [12]–[21],

[28].
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II. COMPLEX GYRATOR CIRCUITS OF DEGREES 1

AND 2 OF JUNCTION CIRCULATORS WITH OPEN-

AND SHORT-CIRCUITED IN-PHASE

EIGENNETWOIUCS

The eigenvalue diagrams employed to classify the l-port

complex gyrator circuits of weakly magnetized junction

circulators usually assume that the demagnetized counter-

rotating (S * ) and in-phase (S 0, eigenvalues are S * = 1

and S 0 = + 1 [1], [5], [7], [21]. However, these two solutions

do not form a full set since it is also possible to have

S * = – 1 and S0 = +-1. Fig. 1 depicts the complete family

of solutions. The in-phase and counter-rotating eigenvalues

are the reflection variables of l-port reactive networks

known as the eigennetworks of the junction. These maybe

realized in terms of the poles of the eigenvalues in either a

first or second Foster form, in the manner illustrated in

Fig. 2(a) and (b) [3]. Counter-rotating poles, in this expan-

sion, that have the symmetry of the junction are associated

with the in-phase eigennetwork. Whether a pole of an

eigenvalue exhibits an electric or magnetic wall at the

symmetry plane is readily established by application of the

appropriate in-phase or counter-rotating eigenvectors at

the terminals of the junction [1], [27]. Although the lowest

order in-phase pole is usually associated with a magnetic-

wall boundary condition at the symmetry plane of the

junction, it may also exhibit an electric wall there, as, for

instance, in an E-plane junction, or if a thin metal wall is

introduced through the plane of symmetry of an H-plane

one, or in the vicinity of the counter-rotating poles having

the symmetry of the junction. Likewise, although the lowest

order counter-rotating poles of the junction are usually

associated with electnic-wall boundary conditions at the

symmetry plane of the junction, they may still exhibit

magnetic-wall boundary conditions at its terminals by real-

izing the eigennetworks by half-wave-long transmission

lines instead of quarter-wave ones. Fig. 3 illustrates the

distinction between the in-phase eigennetworks for E- and

H-plane junctions.

Substitution of an electric wall for a magnetic one, for

either of the eigenvalues, leads to a reversal in the direction

of circulation of the junction, as is readily verified if the

splitting between the eigenvalues is correctly reset [26].

This is also the case if S + are interchanged. The open-cir-

cuit parameters of the junction do not exist if the in-phase
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Fig. 1. (a) First and second circulation adjustments for junction circula-

tor with S0 = – 1 and S * =1. (b) First and second circulation adysst-
ments for junction circulator with S0 = – 1 and ,S* = – 1. (c) First and
second circulation adjustments for Junction circulator with S0 = 1 and
S * = – 1. (d) First and second circulation adjtSStDNWSfor junction
circulator with S0 = 1 and S * =1.

eigennetwork exhibits a magnetic-wall boundary condition,

and conversely the short-circuit parameters do not exist if

it exhibits an electric-wall boundary condition. If the in-

phase and degenerate eigennetworks exhibit dual walls,

then the demagnetized junctions have neither open- nor

short-circuited parameters. If the in-phase eigennetwork is

idealized by a frequency-independent electric or magnetic

wall at the terminals of the junction then the corresponding

eigenvalue diagram is of degree 1, otherwise it is of degree

2. A number of practical examples of the latter class have

been mentioned in [4], [7], [10], [11].

The eigenvalue diagrams in Fig. l(a)-(d) maybe labelled

according to whether the eigennetworks exhibit electric or

magnetic walls at the terminals of the junction and accord-

ing to whether the in-phase eigennetwork is idealized by a

frequency-independent electric or magnetic wall or not as

e,2m, e,2e, m,2e, and m,2m of degree 1 or 2. If the

in-phase eigennetwork is idealized by either a frequency-in-

dependent open- or short-circuited stub at the terminals of ~

the junction, then the l-port complex gyrator circuit is a
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Fig. 2. First and second foster forms of in-phase and counter-rotating

eigennetworks of junction circulator.

STUB-R load of degree 1, otherwise it is a STUB-R load

of degree 2. The l-port gyrator circuits of degrees 1 and 2

discussed here are formed in terms of the in-phase (2°, YO)

and counter-rotating (Z*, Y * ) immittance eigenvalues;

both the in-phase and counter-rotating eigennetworks are

explicitly exhibited by the gyrator circuits of degree 2.
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Fig. 3. In-phase excitation of E- and H-plane Junctions.

The ~omplex gyrator circuits of degree 1, obtained by

idealizing the in-phase eigennetwork by a frequency-inde-

pendent electric wall and those of the degenerate counter-

rotating ones by either magnetic or electric walls will now

be examined as a preamble to summarizing the dual prob-

lem for which the in-phase eigennetwork exhibits a mag-

netic wall at the terminals of the network. Fig. 4 gives the

complex gyrator circuits for the four degree 1 situations,

and Fig. 5 illustrates the corresponding lumped-element

circuits. Since the short-circuit parameters do not in the

former instance exist, the derivation starts by forming the

classic gyrator l-port impedance in terms of the open-cir-

cuit parameters of the junction with V~ = Iq = O

~, =Z Z:2.
m 11 Z13

(1)

The short-circuit parameters Zll, Zlz, and Z1~ are given in

the usual way in terms of the admittance eigenvalues ZO

and Z * by

Zll =
zo+z++z-

3
(2)

z = ZO + Z+ exp(j120)+Z- exp(– j120)
12 3

(3)

z = ZO + Z+ exp(– j120)+ Z- exp(j120)
13 3

(4)

Exact complex gyrator circuits of degree 1 may now be

formed at the frequencies at which the counter-rotating

eigennetworks exhibit either electric or magnetic walls.

0

~- “P“P!“3w(a
0 I I I

Y,”

0

a
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--Q-+-l

Fig. 4. Complex gyrator circuits of degree 1.

Idealizing the in-phase eigennetwork by an electric wall

gives

Z“=o. (5)

The result is

l’,n=+=(y+~y-)-jfi(y+~y-). (6)
m

This result has historically been given with an approxima-

tion sign but is exact as can be readily verified by tracing

(1) and (6). The case where the degenerate eigenvalues

exhibit magnetic walls may now be distinguished from that

for which they have electric walls. In the first situation, the

counter-rotating eigennetworks may be realized using

quarter-wave-long short-circuited stubs, and the complex

gyrator circuit takes the form in Fig. 4(a). In the second

case, the counter-rotating networks may be realized by

half-wave-long short-circuited stubs, and the corresponding

complex gyrator circuit has the topology indicated in Fig.

4(b). The counter-rotating eigenvalues are also, in this

latter instance, interchanged on the eigenvalue diagram so

that the junction now circulates in the opposite direction.

Some additional distinguishable properties of these two

solutions are that for the eigenvalue diagram in Fig. l(a)

the real part of the gyrator immittance tends to a magnetic

wall as the junction is demagnetized, while that in Fig. l(b)
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tends to an electric wall under the same condition. Whether

one or the other situation applies is determined by whether

the degenerate eigennetworks have magnetic or electric

walls. Furthermore, the required angular splitting on the

eigenvalue diagram is in the former case, half that of the

latter one. Surprisingly enough, the susceptance slope

parameter of the second solution is now a function of the

splitting. All of these aspects may be readily verified by

scrutinizing Figs. l(a) and (b) and 4(a) and (b), or they

may be more directly demonstrated by assuming that Y *

in Fig. 2 may phemenologically be written as

Y * = – ja~Y1cot(O1 + Adl). (7)

f31 is the electrical length of the degenerate counter-rotating

eigennetworks, ~ AO1 represents the perturbation in the

demagnetized eigennetworks when the junction is mag-

netized, Y1 is the characteristic admittance of the eigennet-

works which, for simplicity, are assumed to coincide with

those of the demagnetized junction, and al is the turns

ratio of an ideal transformer that represents the coupling

between the three transmission lines and the resonator.

Forming (6) in the vicinities of fll = 7r\2 and T readily

yields

Yin = ~3a~Y1 tan Af31– jafY1
cot 61(1 + tan2 Adl )

1 – cot281 tan2 Adl

Yin = –
tandl(l + tan2 Adl)

~3afY1cot Adl – ja:Y1
tan2 191– tan2 A61 “

The real part of the first solution is asymptotic

(8)

(9)

to a

magnetic wall in the neighborhood of T/2 as the junction

is demagnetized and the second one to an electric wall in

the vicinity of 131= n under the same conditions. The

imaginary part of the second solution also differs from the

first one in that it exhibits a passband at

tan 01= O (lo)

and stopbands at

tan 01= ~ tan AL91 (11)

and that in the vicinity of 01 = w its susceptance is depen-

dent upon AO1. These features may also be appreciated by

inspection of the lumped-element gyrator circuits in Fig. 5.

The susceptance slope parameters of these two arrange-

ments, neglecting the frequency variation of the denomina-

tor polynomials, are given by (8) and (9) in the vicinities of

(31= r/2 and w as

= ‘a2Y~’ 411

= ‘a2YB’ z ~ ~/tan2 A6 1

(12)

(13)

respectively. The loaded Q-f actors for these two solutions

have both the same form and are indeed identical if B’ in

(13) is realized with the aid of an open-circuited quarter-

wave-long stub instead of a short-circuited half-wave-long

lyn -

385

G

electrlc
wall

;Z+

—-’-uO--’-%“7
~u’”rc

k+ &z-

0

I

Fig. 5,

one

Lumped-element equivalent circuits of complex gyrator circuits

of degree 1.

QL=~=40 L cot AO1

QL=: cot Ael .
2J3

(14)

(15)

A$l is determined by the real parts of (8) and (9). The

nature of these two solutioris has been verified by forming

their exact frequencies responses in the vicinities of 01 =

7r/2 and n using (l). The e, 2m degree 1 solution described

by (8), (12), and (14) is of course a standard result and

need not be dwelt on further. Fig. 6 gives the frequency

response of one solution for completeness. The e, 2 e degree

1 result, given by (9), (13), and (15), however, differs from

the classic one in that both its susceptance slope parameter

and conductance are dependent upon the magnetic vari-

ables of the resonator. Figs. 7 and 8 display the frequency

responses of this solution for two different arbitrary values

of the magnetic parameter. The passbands and stopbands

exhibited by (10) and (11) are noted. The fact that the

gyrator conductance is negative in this result merely means

that the device rotates in the opposite direction from the

solution in Fig. 6.

The complex gyrator circuit in Fig. 4(a) is the classic

result met in the theory of planar and turnstile H-plane
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Fig. 6. Conductance andsusceptanceof e,2mdegree l complex gyrator

circuit for AOI = 0.10 rad (a~Yl =1).

junctions using quarter-wave-long open resonators [12],

[27]. The one in Fig. 4(b) may also be realized in an
E-plane junction. The demagnetized junction now exhibits

a bandstop instead of a bandpass characteristic [15], [20].

The angles 8 * on the eigenvalue diagrams are functions

of 131,A131,and B’ and may be formed by constructing the

reflection coefficients 5’* = 1 exp ( – j28 ~).

YO– Y*
Sk=

YO+Y+
(16)

where YO is the characteristic admittance at the ports.

The derivation of the l-port complex gyrator circuits of

degree 1 for the cases where the in-phase eigennetwork is

idealized by a frequency independent magnetic wall and

those of the counter-rotating ones by either magnetic or

electric walls proceeds in a similar fashion except that

short-circuit parameters are employed to form the complex

gyrator immittances, and that YO instead of 2° is assumed

40,00

30,00
I I

Rt7D1RN FREQUENCY

Fig. 7. Conductance and susceptance of e, 2 e degree 1 complex gyrator

circuit for A6’I = 01.0 rad (a~Yl = 1).

to be zero in the approximation problem

z =(2++ 2-) +jti(z+-z’)
m 2 2“

(17)

The appropriate equivalent circuits are illustrated in Fig.

4(c) and (d). The gyrator resistance is asymptotic to an

electric wall in the first instance and to a magnetic one in

the second case. The solution in Fig. 4(c) is well behaved in

the vicinity of its midband, but that in Fig. 4(d) exhibits

stopbands on either side of its passband and a stopband in

its demagnetized state.

Short-circuited in-phase eigennetworks may in practice

be realized by introducing a short-circuit boundary condi-

tion in the form of a thin metal post through the symmetry

axis of an H-plane junction or may be directly exhibited

by an E-plane junction or may be formed in the vicinity of

a pole having the symmetry of the device. An example of

an m, 2 e eigenvalue diagram or complex gyrator circuit of



HELSZAJN: QUARTER-WAVE COUPLED JUNCTION CIRCULATORS

-___J

RRDIFIN FREQUENCY

Fig. 8. Conductance a-ndsusceptanceof e,2e degreel complex gyrator
circuit for Adl = 0.30 rad (a~Yl = 1).

degree 1 maybe understood from the situation described

in [15]. An example of an m,2m eigenvalue diagram of

degree 1 does not come to mind, but a half-wave-long

turnstile resonator in an E-plane junction is one possibil-

ity.

The derivation of the complex gyrator circuits of degree

2 for the two eigenvalue diagrams in Fig. l(a) and (b), as

well as for the two in Fig. 1(c) and (d), has been outlined in

[11] except that the situations for which S * = – 1 are

specifically outlined in Fig. 9. It will therefore not be

repeated here. Fig. 10 gives the lumped-element equivalent

solutions for this class of device. In realizing these circuits,

it has been assumed that the real part of the complex

gyrator immittance may be formed by idealizing the in-

phase eigennetwork by either an electric or magnetic wall

[3], [11]. It is readily appreciated that the split shunt

parallel and series resonators in Fig. 10 both reduce to

single shunt resonators in the vicinities of the passband

frequencies, and that, likewise, the series combinations of

I Yi;
I I

mm

I ~,n~
Fig. 9. Complex gyrator circuits of degree 2.

the series and parallel resonators reduce to series reso-

nators at the same frequencies. Each of the gyrator circuits

of degree 2 has the same transmission zeros and thus each

can be arranged to exhibit the same transmission character-

istic. The insertion-loss function for this class of network is

akin to that realizable with a complex gyrator circuit of

degree 1 coupled by a single U.E. Examples of this situa-

tion have been mentioned in [4], [7], [10], [11]. The synthe-

sis of U. E.-coupled complex gyrator circuits of degree 2 is

of course of interest [6], [10] and will be tackled in some

detail in the next section. The synthesis of U.E.-coupled

gyrator circuits of degree 1 is well rehearsed in the litera-

ture [22]–[25].

III. THE NETWORK PROBLEM

Since the circuits in Fig. 9(a) and (b) have similar

topologies as have those in Fig. 9(c) and (d), the matching

problems reduce to the solutions of the two situations in

Fig. n(a) and (b). Furthermore, since all four circuits have

the same transmission zeros, they may all be synthesized

from the same insertion-loss function. Although the eigen-

networks of the junction may, consist of half- or three-

quarter-wave-long stubs, the circuits in Fig. 11 employ

quarter-wave-long stubs to permit exact synthesis of the

network problem. The equivalence between the circulator



388 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 5, MAY 1985

+ 2°

&

r 2- G
U.E.,~ G

rmgnet. c (a)
..11

Zm

+“

‘m,eecrcr-

I Ym
+ z+ +z-

r

R
nlaq’r,et,c
wall

I Yin

Fig. 10. Lumped-element equivalent cmcuits of complex gyrator circuits
of degree 2.

and network problems is then achieved by equating the

susceptance or reactance slope parameters of the two.

The Chebyshev approximation problem may be readily

formed from a knowledge of the n-transmission zeros of

the transformed variable Z and follows closely the proce-

dure employed in [25]. The appropriate conformal transfor-

mation between the Z and Richards S variables is in this

instance given by

22 =1+ s2/Qf

where S is

S=jtan/3

and 01 is determined by the lower

length 191indicated in Fig. 12

fll=jtandl.

(18)

(19)

band-edge electrical

(20)

The networks in Fig. 11 have a double-ordered pole at

S = O, due to the two stubs

21,2 =1 (21)

and a half-ordered pole at S = 1

23= ~- (22)

the latter being due to the unit element.

Fig. 11. (a) Quarter-wave coupled shunt STUB-R load of degree 2. (b)

Quarter-wave coupled series STUB-R load of degree 2.

The auxiliary function is

where for the problem at hand

(23)

fi(z, +z)=(l+zy
~=1

(/%+2) ’24)

The Chebyshev equiripple insertion-loss function is given

in terms of the auxiliary function by

L=1+K2+c2
[ 1
f(z)+ f(-z) 2

2
(25)

or

11r(1+22) 1++ +22’ 2

L=l+K2+t2

(1-22)(1+ +:22)1’2 “ ‘2’)

Writing Z in terms of S readily gives the required result

L=1+K2+c2

[

(m+w)s2+w(m+Ql) 2
S24F-F 1

(27)

This may be synthesized separately without difficulty to

give the circuits indicated in Fig. 11. Some results for the

topology in Fig. 1l(a) are given in Table I. These tables are

also directly applicable to the circuit in Fig. n(b) by

noting the duality between the two circuits. This is done by

replacing YI with Zl, Y2 with 22, Y3 with 23, and G

with R.
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Fig. 12. n=3equiripple insertion-loss function.

TABLE I IV. CONCLUSIONS

c . -$5’?>;’
0.:; ?,.35

Since the more useful values of loaded Q-factors in

junction circulators are obtained by having the gyrator

conductance traverse the origin of the Smith Chart, inspec-
tion of the tabulated data indicates that not all degree 2

complex gyrator circuits are equally well suited for match-

ing with a single U.E. The realization of the appropriate

imrnittance levels of the gyrator circuits of practical circu-

lators must of course be determined either experimentally

or theoretically [27].

Three-port junction circulators employing weakly mag-

netized resonators may exhibit one of four eigenvalue

diagrams of degree 1 or 2. There are, therefore, eight

possible complex gyrator circuits and these have been

directly realized in terms of the eigennetworks of the

junction. A knowledge of that, applicable in any given

situation, is essential for design. The topologies of the

gyrator circuits derived in this paper are particularly suit-

able for use in the synthesis problem.
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